(photo: )
20.05.2019, 00:29

Uncovering Savings Opportunities

Healthcare & Educational Facilities, Energy Management, Energy Management and Conservation, Heating, Ventilating & Air Conditioning (HVAC), Education, Americas
Georgetown University's Energy and Utilities Department has reduced energy consumption and achieved improvements in laboratory safety with the assistance of Aircuity's 2.0 Platform.


Georgetown University in Washington, DC, is one of the world’s leading academic and research institutions, and is classified a Very High Research Activity (RU/VH) University by The Carnegie Foundation for the Advancement of Teaching.


Completed in 2012, the university's Regents Hall is a state-of-the art research and teaching center for biology, chemistry, and physics. With 154,000 square feet of research space, it houses three classrooms, 12 teaching labs, and dozens of research labs in addition to conference rooms and student lounges.


Knowing the enormous utility costs associated with running a science facility, Georgetown Energy and Utilities department invited Aircuity to evaluate how their platform could help reduce energy consumption while improving lab safety.


Aircuity assessed the labs on an individual basis and determined that 65 were a good fit for the application of demand-control ventilation. A proposal with a calculated annual savings was presented to GU management and the project soon got underway. The system installation took three months with very minimal impact to research and teaching activities. Subsequently, the new control system was commissioned in May 2017. Within the first year, the actual energy savings was nearly $124,000.


Soon after completion, Georgetown’s analytics identified 5 areas of opportunity that the university could address to reach their full savings potential.


Fume Hood Behavior

Data from the Aircuity system showed that ten fume hoods were left at full operational height continuously for several weeks. With each hood averaging $4,500/year to operate (roughly the same utility cost as a house), the ability to easily identify issues and modify behavior relative to these hoods provides for significant savings. Had these 10 hoods remained fully opened for year it would have cost the university $45,000.


Using this information, Environmental and Occupational Safety Manager, Casey Cahill, worked with Science Building Manager, Kavita Tanksale, researchers and students, to ensure these sashes are closed when the fume hoods are not in use. This action has achieved a measurable improvement.


Rooms with High Thermal Loads
There were 13 rooms with CFM higher than their targeted rate. These excess flows total 2745 CFM, or approximately $13,725 in missed energy savings.


Rooms with Frequent DCV Responses

These events are all within normal operating parameters and are sufficiently ventilated by the system. They caused an excess flow of approximately 750 CFM.

Incorrectly Programmed Fume Hoods

Fume hoods were found going to their max based on occupancy, not sash position. Adding up the combined CFM that these hoods are running over their minimum, during the occupied periods (approximately 8:00 am to 8:00 pm), the difference between the min and max flows is a combined 7500 CFM. We see this issue during 60 of the 168 hours in a week = 35.7 per cent of the time.


Estimating that a researcher works in their fume hood about 10% of the time,there is opportunity for saving 6750 CFM.

Increased Fan Power for More Duct Static in One Room

Aircuity’s lab ventilation energy model was run with an increase static of 20% at the exhaust fans only (1.5 to 1.8 = 20 per cent). There was about 70,000 kWh attributed to the increase.

In addition to understand the full savings opportunity, Georgetown’s Environmental, Health & Safety department used the information displayed at the Aircuity portal to verify the high performance of rooms, relative to Indoor Environmental Quality (IEQ).


Using the MyAircuity web app which automatically ranks rooms by IEQ performance, Casey Cahill was able to use analytics to identify a room which had undergone considerably more IEQ events during the preceding fortnight. Armed with this information, he went to the specific room to locate and contain a source of contaminants.

Using the Aircuity 2.0 Platform, Georgetown University has:

• Delivered energy savings in an already cutting-edge building;
• Gained quick and easy access to actionable information that is valued by multiple stakeholders; and
• Created measurably better environments for all occupants 


Georgetown has now embarked on a second project for its main campus.





Article rating:

vote data

Leave a reply

Jacob Aarup-Andersen. (photo: )
News Editor  - 19.05.2020, 17:02

ISS Names New CEO

ISS has appointed banker, Jacob Aarup-Andersen, to succeed Jeff Gravenhorst on his retirement on 1 September 2020.

 (photo: gdtography)
Mark Gifford  - 04.05.2020, 20:53

Building Measurement and Verification in Lockdown

Mark Gifford, Technical Services Manager with global building performance specialist IES, considers the implications of Zero Running Buildings for Energy Services and FM teams during COVID-19.

Edge Hill University Campus. (photo: Edge Hill University)
News Editor  - 13.05.2020, 15:04

Celebrating Key Workers on World FM Day

Edge Hill University in Lancashire, North West England, is celebrating World FM Day today by thanking staff for their hard work during the year.

 (photo: )
FM Editor  - 18.12.2019, 16:08

The Drains of Christmas Future

UK wastewater and drainage solutions provider Lanes Group has reimagined "A Christmas Carol" into a story about the importance of clean drains.

 (photo: )
FM Editor  - 18.12.2019, 13:27

University of Manchester Clean Room Contract

SPIE UK has won an 18-month design, supply, install and commission contract for a clean room at The University of Manchester, as part of a new build being constructed by Balfour Beatty.